NONLINEAR WAVE EQUATIONS FOR RELATIVITYMaurice
نویسنده
چکیده
Graviational radiation is described by canonical Yang-Mills wave equations on the curved space-time mani-fold, together with evolution equations for the metric in the tangent bundle. The initial data problem is described in Yang-Mills scalar and vector potentials, resulting in Lie-constraints in addition to the familiar Gauss-Codacci relations.
منابع مشابه
ra ri es o n 16 M ay 1 99 5 . G R - Q C - 9 50 50 23 NONLINEAR WAVE EQUATIONS FOR RELATIVITYMaurice
Graviational radiation is described by canonical Yang-Mills wave equations on the curved space-time mani-fold, together with evolution equations for the metric in the tangent bundle. The initial data problem is described in Yang-Mills scalar and vector potentials, resulting in Lie-constraints in addition to the familiar Gauss-Codacci relations.
متن کاملSTABILITY ANALYSIS FROM FOURTH ORDER NONLINEAR EVOLUTION EQUATIONS FOR TWO CAPILLARY GRAVITY WAVE PACKETS IN THE PRESENCE OF WIND OWING OVER WATER.
Asymptotically exact and nonlocal fourth order nonlinear evolution equations are derived for two coupled fourth order nonlinear evolution equations have been derived in deep water for two capillary-gravity wave packets propagating in the same direction in the presence of wind flowing over water.We have used a general method, based on Zakharov integral equation.On the basis of these evolution eq...
متن کاملOn the Exact Solution for Nonlinear Partial Differential Equations
In this study, we aim to construct a traveling wave solution for nonlinear partial differential equations. In this regards, a cosine-function method is used to find and generate the exact solutions for three different types of nonlinear partial differential equations such as general regularized long wave equation (GRLW), general Korteweg-de Vries equation (GKDV) and general equal width wave equ...
متن کاملExact travelling wave solutions for some complex nonlinear partial differential equations
This paper reflects the implementation of a reliable technique which is called $left(frac{G'}{G}right)$-expansion ethod for constructing exact travelling wave solutions of nonlinear partial differential equations. The proposed algorithm has been successfully tested on two two selected equations, the balance numbers of which are not positive integers namely Kundu-Eckhaus equation and Derivat...
متن کاملEFFECT OF COUNTERPROPAGATING CAPILLARY GRAVITY WAVE PACKETS ON THIRD ORDER NONLINEAR EVOLUTION EQUATIONS IN THE PRESENCE OF WIND FLOWING OVER WATER
Asymptotically exact and nonlocal third order nonlinear evolution equations are derivedfor two counterpropagating surface capillary gravity wave packets in deep water in thepresence of wind flowing over water.From these evolution equations stability analysis ismade for a uniform standing surface capillary gravity wave trains for longitudinal perturbation. Instability condition is obtained and g...
متن کامل